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A B S T R A C T

To quantify the “segmentation noise” of several widely used fully automatic methods for measuring longitudinal
hippocampal atrophy in Alzheimer's disease and compare the results to the segmentation noise of manual
segmentation over both 1 and 3 years. The segmentation noise of 5 longitudinal hippocampal atrophy mea-
surement methods was quantified, including checking its Gaussianity, using 264 subjects from the ADNI1 back-
to-back (BTB) data set over both 1 year and 3 year intervals. The segmentation methods were FreeSurfer 5.3.0
both cross sectional and longitudinal, FreeSurfer 6.0.0 longitudinal, MAPS-HBSI and FSL/FIRST 5.0.8. The BTB
manual segmentation of 75 ADNI subjects from a previous study provided the manual distributions for com-
parison. All methods, including the manual segmentation, violated the Gaussianity assumption. Two methods,
FreeSurfer 6.0.0 and MAPS-HBSI, had a segmentation noise substantially less than a surrogate for manual
segmentation. FreeSurfer 5.3.0 longitudinal was confirmed as a surrogate for manual segmentation. The vio-
lation of the Gaussian assumption by the segmentation methods assessed, including manual, suggests results of
previous studies that assumed Gaussian statistics without confirmation may need review. Fully automatic
FreeSurfer 6.0.0 and MAPS-HBSI both have lower segmentation noise than manual requiring less than two thirds
of the subjects to detect the same treatment effect.

1. Introduction

Hippocampal atrophy is the amount of shrinkage of the hippo-
campus from one time point to the next. It can be measured with
noninvasive MRI and is a widely validated surrogate outcome for
Alzheimer's disease (AD) trials (Frisoni et al., 2010). It has been shown
to be one of the first observable characteristics of AD (Bobinski et al.,
1996). It also accelerates before the translation to clinical dementia
(Jack et al., 2011) as part of the AD pathology cascade (Jack et al.,
2010). Analysis of the images from the ADNI1 study found the median
annualized atrophy rates were 1.5% (healthy controls (HC)), 2.4%
(mildly cognitively impaired (MCI)) and 5.1% (AD) (Cover et al., 2016).

Many software methods are available to fully automatically

measure hippocampal atrophy directly (longitudinal measurement) or
indirectly by measuring the change in volume between two time points
(cross sectional measurement). Segmentation methods include
FreeSurfer (Fischl et al., 2012), FSL/FIRST (Patenaude et al., 2011) and
MAPS-HBSI (Leung et al., 2010). Several fully automatic segmentation
methods also have government approval for clinical use including
NeuroReader (Ahdidan et al., 2015; NeuroReader, 2016), LEAP
(Woltz et al., 2014; LEAP, 2016) and NeuroQuant (Ochs et al., 2015;
NeuroQuant, 2016).

Correctly assessing the performance of fully automatic segmentation
methods is particularly challenging when the methods perform better
than the gold standard of manual segmentation. Recently, we reported
that a fully automatic segmentation method (MAPS-HBSI) (Leung et al.,

https://doi.org/10.1016/j.pscychresns.2018.06.011
Received 19 February 2018; Received in revised form 26 June 2018; Accepted 27 June 2018

⁎ Corresponding author.

1 Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found at:

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

E-mail address: keith@kscover.ca (K.S. Cover).

Psychiatry Research: Neuroimaging 280 (2018) 39–47

Available online 09 August 2018
0925-4927/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09254927
https://www.elsevier.com/locate/psychresns
https://doi.org/10.1016/j.pscychresns.2018.06.011
https://doi.org/10.1016/j.pscychresns.2018.06.011
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
mailto:keith@kscover.ca
https://doi.org/10.1016/j.pscychresns.2018.06.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pscychresns.2018.06.011&domain=pdf


2010) had substantially lower segmentation noise than manual seg-
mentation (Cover et al., 2016).

Almost all studies assessing the segmentation noise of the hippo-
campus - and other structures such as the whole brain or cortical
thickness - have used parametric statistics which assume Gaussian
distributions - such as the mean, standard deviation and interclass
correlation coefficient. Gaussian distributions are also referred to as
normal distributions. There are only a few exceptions (Smith et al.,
2007; Cover et al., 2011; Mulder et al., 2014; Cover et al., 2016; Opfer
et al., 2016). The validity of the parametric statistics rests on the seg-
mentation noise having a Gaussian distribution. While the segmenta-
tion noise of the whole brain has been shown to violate the Gaussian
assumption (Cover et al., 2011), no study in the literature has checked
whether any of the segmentation methods measuring hippocampal
atrophy has a Gaussian noise distribution. Rarely has the potential
impact of non-Gaussian distributions on parametric statistical calcula-
tions such as sample size been considered.

The current study focuses on assessing the segmentation noise - as
measured by the back-to-back (BTB) reproducibility - of hippocampal
atrophy measuring methods that have lower segmentation noise than
that of the manual method. The segmentation noise for all methods is
analyzed with both parametric and robust statistical methods. Also, the
Gaussianity of the segmentation noise distributions is checked to de-
termine if robust statistics are required. In addition, the segmentation
noise of FreeSurfer 5.3.0 longitudinal is compared to the segmentation
noise of manual measurements to confirm FreeSurfer 5.3.0 longitudinal
is a suitable surrogate for the noise of manual segmentation. Finally, the
segmentation noise over 1 and 3 years for all methods is compared to
the surrogate for manual segmentation noise.

2. Methods

2.1. Dataset

The ADNI1 data set is widely used in studies of the reproducibility
of structural measures including the hippocampus (Cover et al., 2011;
Mulder et al., 2014; Ochs et al., 2015; Ahdidan et al., 2015; Chincarini
et al., 2016; Cover et al., 2016). The 1.5T T1-weighted MRI scans were
selected from the ADNI database and downloaded in their original
unprocessed DICOM format. A total of 264 subjects are selected that
had two BTB scans at baseline, 1 year and 3 years for a total of
6× 264=1,584 image volumes. Supplemental table S1 has a complete
listing of the subjects used including exact identification of the image
volume. The 264 subjects in the current study are a subset of the 562
ADNI1 BTB 1.5T subjects in a previous study (Cover et al., 2016). Only
264 of the 562 subjects also had BTB scans at 3 years in ADNI1
therefore only 264 subjects are used in the current study.

The ADNI1 study acquired the MRI sequence twice during each
patient visit. The subjects did not leave the MRI between MPRAGEs and
often the second MPRAGE started within a few second of the comple-
tion of the first. While the images from only one MPRAGE sequence at
each patient visit are needed to calculate the hippocampal atrophy, the
second MPRAGE provides excellent data to make noise measurements.
The two MPRAGE sequences are referred to as BTB, rather than scan-
rescan, because they were acquired without the patient leaving the MRI
scanner. The topic of the current paper is the noise of the segmentation
methods. It is a reasonable assumption that all the segmentations
methods in the current paper are relatively accurate as they are widely
used. Thus, the accuracy of the segmentation methods is beyond the
scope of the current paper.

The 264 subjects in the current study contained 120 healthy con-
trols (HC), 143 mildly cognitively impaired (MCI) and 1 probable AD as
classified by the ADNI1 study The low number of probable AD subjects
is likely due to the higher probability of probable AD subjects dropping
from the study over the first 3 years. Table 1 provides descriptive sta-
tistics of the 264 subjects.

As no manual segmentation was performed as part of the current
study, 75 ADNI1 BTB 1.5T subjects used in prior studies (Mulder et al.,
2014; Cover et al., 2016) were also included in the current study to
provide some statistics on the performance of manual segmentation.
While the 75 subjects are also a subset of the 562 subjects used in a
previous study (Cover et al., 2016), as are the 264 subjects mentioned
above, only 40 of the subjects were common to both.

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (ad-
ni.loni.usc.edu). The ADNI study was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer's disease (AD).

2.2. Statistical Analysis

A detailed description of the statistical analysis for BTB atrophy
measurement has been presented previously (Cover et al., 2016). Fig. 1
of the current paper provides the steps to calculate the BTB differences
over 1 year and 3 years. Additional details of the calculations follow.

The amount of atrophy - as measured by the percentage volume
change (PVC) - from baseline (VA) to year 1 or year 3 (VB) was calcu-
lated by the equation 100*(VB-VA)/VA. For each subject there were 8
PVCs - 2 for the left and right hippocampus, 2 for the 1 year and 3 years
intervals and 2 for the BTB acquisition. The BTB differences were cal-
culated by subtracting the PVCs of the first acquired image volume of a
subject visit from that of the second. Consequently, there were 4 BTB
differences for each subject - one each for the left and right hippo-
campus and one each for the 1 year and 3 year intervals. As a result,
there were 4 BTB difference distributions for each method.

A variety of statistics were calculated for each BTB difference dis-
tribution. All statistics were calculated from the absolute values of the
BTB differences. The statistics included the maximum, minimum,
median (MDBTBD), mean (MNBTBD) and standard deviation
(SDBTBD). The value of the mean subtracted off before calculating the
standard deviation was assumed to be zero. The number of BTB dif-
ferences in each distribution is also listed so the number of times each
method failed to yield a BTB difference can be determined.

Three different statistical tests were used to test the Gaussianity of
the BTB difference distributions. Two of the tests, the Anderson-Darling
and the Shapiro-Wilk tests, tested general properties of Gaussianity. The
third test was tailored to whether the distributions had too many out-
liers for a Gaussian distribution.

The tailored test is based on the ratio of SDBTBD and MDBTBD, two
measures of the spread of BTB distributions used in the literature. For
an ideal Gaussian distribution the ratio of SDBTBD/MDBTBD is 1.3654.
However, as the standard deviation of a distribution is more sensitive to
the distribution's shoulders the ratio increases as the shoulders get
larger. To calculate the p-value for a range of ratios, 10,000,000

Table 1
Descriptive statistics of the 264 subjects from the ADNI1 included in the current
study. The interquartiles are in brackets.

Cohort Status Sample size M/F Age (Baseline)

3 year fully automatic HC 120 66/54 75.0 (72.0, 78.5)
MCI 143 100/43 74.1 (70.6, 80,5)
AD 1 1/0 78.4
Combined 264 167/97 74.4 (71.5, 79.5)

1 year manual HC 19 11/8 76.5 (72.1, 79.6)
MCI 38 25/13 73.7 (70.7, 77.9)
AD 18 7/11 74.1 (69.4, 78.4)
Combined 75 43/32 74.1 (70.7, 77.9)
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simulated Gaussian distributions with 264 BTB differences each were
calculated. After sorting the 10,000,000 ratios, the percentile in the list
provides the p-value of the null hypothesis. The 95% confidence in-
terval of the ratio was (1.332, 1.665). The 1.3654 ideal ratio is not in
the center of the confidence interval because the distribution is not
symmetric. The SDBTBD/MDBTBD ratio was also calculated for the 75
subjects with manual segmentations to test the Gaussianity of the
manual segmentation. The 10,000,000 simulations were also run and p-
values calculated for N=263 and 262 BTB differences.

The robust binomial test, which does not depend on Gaussianity or
rank (Cover et al., 2016), was used to determine which of any two BTB
difference distributions had the larger segmentation noise. The first step
of the test calculates the fraction of the first distribution that has a
larger absolute BTB difference on a subject by subject basis. In the
second step a p-value is calculated from the fraction using the binomial
distribution and assuming the null hypothesis that two identical dis-
tributions will have a fraction of 0.5. The BTB difference distributions
were compared for the 1 and 3 year interval for each method and for
both the left and right hippocampus. The distributions were also com-
pared against the surrogate manual method, FreeSurfer 5.3.0 long-
itudinal, to determine which methods had atrophy segmentation noise
lower than manual.

A key approach for comparing the performance of two segmentation
methods is the number of subjects required to detect a given treatment
effect. The relative group size of any two segmentation methods can be
calculated from the ratio of the square of the spread of their respective
BTB difference distributions. The larger the spread the larger the group
size required. For comparison, the relative group size is calculated with
two different measures of the spread of the distributions – the MDBTBD
and the SDBTBD. For each method the median of the 4 MDBTBD and 4
SDBTBD are used to calculate the relative group sizes.

As manual BTB segmentation of the 264 subjects over 1 and 3 years
was unavailable, the segmentation noise of FreeSurfer 5.3.0 in long-
itudinal mode was used as a surrogate. Previous publications reported
that the segmentation noise of FreeSurfer 5.3.0 in fully automatic
longitudinal mode is roughly the same as manual segmentation as de-
termined by parametric statistical tests (Mulder et al., 2016) and the
similarity of their MDBTBD values (Cover et al., 2016). In the current
study the robust binomial test (Cover et al., 2016) is used to verify this
result by comparing the BTB difference distributions for the 75 manual
segmentation to the FreeSurfer 5.3.0 longitudinal BTB difference dis-
tributions for the same subjects.

The analysis of the BTB difference primarily used software routines
from Press et al. (2002) with the exception of the Anderson-Darling and
Shapiro-Wilk tests which are from the JDistlib library (jdistlib.source-
forge.net).

2.3. Atrophy measurement methods

A total of 5 fully automatic methods were run on each of the ADNI
BTB image volumes. Two of the methods were cross sectional –
FreeSurfer/ReconAll 5.3.0 in cross sectional mode (Fischl et al., 2012)
and FSL/FIRST 5.0.8 (Patenaude et al., 2011) – and 3 were longitudinal
– FreeSurfer/ReconAll 5.3.0 in longitudinal mode (Fischl et al., 2012),
MAPS-HBSI (Leung et al., 2010) and FreeSurfer/ReconAll 6.0.0 in
longitudinal mode (Fischl et al., 2012). All methods were run with their
default settings.

It is a common practice to manually review the results of fully au-
tomatic segmentation methods and delete any segmentations deemed to
be of poor quality. This practice was not performed on any results in the
current paper as the goal of the paper is to study performance of the
fully automatic methods with no manual assistance.

As an example of an ideal Gaussian distribution, simulated Gaussian
BTB difference distributions were generated where each PVC had a
segmentation noise with a standard deviation of 2.84% yielding BTB
difference distributions with MDBTBDs of roughly 2.2%. This MDBTBD
is in line with previous reports of manual segmentation (Mulder et al.,
2014, Cover et al., 2016) and fully automatic FreeSurfer 5.3.0 long-
itudinal – the surrogate for the manual segmentation noise in the cur-
rent study.

The current study shares some of the aspects of a previous study of
atrophy segmentation noise (Cover et al., 2016). The main differences
are (1) the inclusion of the 3 year interval for atrophy reproducibility in
addition to 1 year, (2) testing the Gaussianity of the atrophy segmen-
tation noise of the hippocampus, (3) assessing the impact of non-
Gaussian distributions on statistical calculations such as group size, (4)
scatter plots to display the 1 year versus 3 year BTB differences of the
segmentation methods, (5) confirming previous reports that fully au-
tomatic FreeSurfer 5.3.0 longitudinal has similar noise to manual seg-
mentation with a robust statistical test, and (6) inclusion of the recently
released FreeSurfer 6.0.0 segmentation method. For completeness,
some of these issues (subjects, study design, MRI acquisition, analysis
methods) are discussed in the current paper with the appropriate
changes detailed.

3. Results

Table 2 shows a variety of statistics for each of the 4 BTB difference
distributions for each of the 7 segmentation methods - which includes
the 5 fully automatic segmentation methods, the simulated Gaussian
method and the manual method. Examination of the MDBTBDs for each
method shows all the MDBTBD for FreeSurfer 6.0.0 longitudinal and
MAPS-HBSI are less than for the corresponding values for FreeSurfer
5.3.0 longitudinal – the surrogate for manual segmentation noise. These
results indicate MAPS-HBSI and FreeSurfer 6.0.0 longitudinal have

Fig. 1. Calculation of the 1 year and 3
year back to back (BTB) differences for a
segmentation method. MPRAGE is the
MRI sequence acquired twice at each pa-
tient visit with identical parameters (M
and N). The percentage volume change
(PVC) of each hippocampus is calculated
by the segmentation method. The BTB
differences over 1 year and 3 years for
each hippocampus are calculated by cal-
culating the difference between the re-
spective PVC pairs.
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lower segmentation noise than manual. Additionally, all of the
MDBTBDs for FreeSurfer 5.3.0 cross sectional and at least 3 of the 4 for
FSL/FIRST are larger than the surrogate for manual segmentation. The
larger values indicate FreeSurfer 5.3.0 cross sectional and FSL/FIRST
are unlikely to be less noisy than manual segmentation. However, de-
tailed knowledge of the distributions of the BTB difference, such as
whether they are Gaussian, is needed to assign statistical significance to
these MDBTBD comparisons.

Table 2 also shows the p-value of the SDBTBD/MDBTBD ratio test of
Gaussianity for each BTB difference distribution along with the An-
derson-Darling and the Shapiro-Wilk tests. For all 6 the segmentation
methods in Table 2, including the manual segmentation, the null hy-
pothesis of a Gaussian distribution is rejected for all three tests. As
expected, the simulated Gaussian method did not reject the null hy-
pothesis. Three of the fully automatic methods each have a single BTB
difference distribution that does not reject Gaussianity. Using the tai-
lored test, the exceptions are p=0.4700 for FreeSurfer 5.3.0 right
hippocampus over one year, p= 0.4389 for FreeSurfer 6.0.0 long-
itudinal left hippocampus over 3 years and p= 0.0500 for MAPS-HBSI
left hippocampus over 3 years. Nevertheless, none of these 3 distribu-
tions should be assumed to be Gaussian as many other properties need
to be confirmed than just the SDBTBD/MDBTBD ratio.

The BTB difference distributions of the 5 fully automatic segmen-
tation methods are displayed as scatter plots of 1 year versus 3 years for
the left and right hippocampus (Figs. 2 and 3). The manual method is
not included as segmentations are only available over a 1 year interval.
Review of the scatter plots provides some quick comparison of the
segmentation methods independent of any particular statistical test.
Scatter plots with the largest clusters correspond to the noisiest seg-
mentation methods. From the scatter plots the methods with the largest
noise are FreeSurfer 5.3.0 cross sectional and FSL/FIRST. The methods
with the smallest noise are MAPS-HBSI and FreeSurfer 6.0.0 long-
itudinal. FreeSurfer 5.3.0 longitudinal – the surrogate for manual seg-
mentation – has segmentation noise at the midpoint of the 5 fully au-
tomatic methods. Therefore, from the scatter plots, only MAPS-HBSI
and FreeSurfer 6.0.0 longitudinal have segmentation noise less than
manual. Thus the scatter plots yield an ordering of the methods by
segmentation noise consistent with the MDBTBD values.

As the BTB difference distributions are not Gaussian, a binomial test
(Cover et al., 2016) – which does not assume a Gaussian distribution
and does not depend on ranks - was used to determine the statistical
significance of the ordering of the fully automatic methods by seg-
mentation noise. The segmentation noise of the methods was compared
to FreeSurfer 5.3.0 longitudinal – the surrogate for the manual seg-
mentation noise. Table 3 presents the fraction and p-values of the bi-
nomial test for each of the 4 BTB difference distributions for each au-
tomatic method. MAPS-HBSI has statistically significant lower
segmentation noise than the manual surrogate for all 4 distributions
while FreeSurfer 6.0.0 longitudinal has lower noise in 3 of the 4 dis-
tributions. The exception for FreeSurfer 6.0.0 longitudinal is
p= 0.0618 for the 3 year left hippocampus. Thus the binomial test's
ordering of the methods by segmentation noise is consistent with the
ordering indicated by both the MDBTBD values and the scatter plots.

Table 2 provides the results of the comparison by the binomial test
of the segmentation noise of 1 year versus 3 years for each method.
MAPS-HBSI has similar segmentation noise over 1 and 3 years as does
FreeSurfer 5.3.0 both in cross sectional and longitudinal mode. `

To confirm the role of FreeSurfer 5.3.0 longitudinal as a surrogate
for manual segmentation noise, the binomial test was used to compare
the BTB difference distributions of manual segmentations to FreeSufer
5.3.0 longitudinal for 75 subjects. For the left hippocampus the fraction
was 0.600 and the p-value as 0.0527 and for the right it was 0.507 and
0.5000. Thus there was no statistically significant difference between
the segmentation noise for manual segmentation and FreeSurfer 5.3.0
longitudinal. Thus FreeSurfer 5.3.0 longitudinal is a valid surrogate for
manual segmentation noise.

Table 3 also shows the relative group sizes to detect a specified
treatment effect for the 5 fully automatic methods relative to the sur-
rogate for the surrogate manual segmentation noise. The group sizes for
both MDBTBD and SDBTBD are provided and, if the Gaussianity as-
sumption held, the two group sizes would be the same. The biggest
discrepancy in group size is for FSL/FIRST that has a relative group size of
1.10 for MDBTBD and 4.66 for SDBTBD indicating a major break with
the Gaussian assumption. The other methods have smaller dis-
crepancies.

4. Discussion

4.1. Gaussianity of the segmentation noise

The most surprising result of the current study is the deviation from
Gaussian of most of the BTB difference distributions of all the fully
automatic methods as well as the manual method. These results are in
contrast to the widespread practice in the literature of using parametric
statistical test for segmentation noise studies. Parametric statistical tests
should be used for atrophy segmentation noise only when the
Gaussianity assumption can be confirmed for a particular distribution.

4.2. Longitudinal segmentation noise over both 1 and 3 years

To date, most of the atrophy reproducibility studies have been over
intervals of 1 year or less (Morey et al., 2010; Jovicich et al., 2013;
Ramirez et al., 2013; Mulder et al., 2014; Marizzoni et al., 2015; Cover
et al., 2016). With multiple year studies becoming more common,
knowledge of the behavior of the segmentation noise over several years
is becoming more important. The design of the ADNI1 study acquired
BTB images at both 1 year and 3 years after baseline for many subjects
making it ideal for comparing the segmentation noise over both 1 year
and 3 years.

The MDBTBD values, scatter plots and binomial statistical test all
agree. MAPS-HBSI and FreeSurfer 6.0.0 longitudinal have substantially
lower segmentation noise than the surrogate for manual segmentation.
From Table 3, and using the MDBTBD values, MAPS-HBSI only requires
39% of the subjects as manual to detect the same treatment effect.
FreeSurfer 6.0.0 longitudinal only requires 49% of the subjects. In
contrast both FSL/FIRST and FreeSurfer 5.3.0 cross sectional would
require more subjects than manual.

For both MAPS-HBSI and FreeSurfer 6.0.0 longitudinal there was
little difference in the segmentation noise over 1 year and 3 years.
Therefore, if the atrophy over 3 years was 3 times larger than over 1
year the signal to noise ratio would be 3 times higher over 3 years as
well. Thus, as expected, a 3 years interval can be 3 times as sensitive to
a treatment effect as a 1 year interval.

It is important to keep in mind the BTB differences are the difference
of two atrophy measurements and thus the noise is larger than for a
single atrophy measurement. For example, if a atrophy segmentation
method with Gaussian noise had a standard deviation of its BTB dif-
ferences of 2.000 then it would be safe to conclude the standard de-
viation of the atrophy segmentation noise of the method was 1.414
(= 2/sqrt(2)). However, all the segmentation methods included in the
current study have large shoulders compared to a Gaussian distribution
and are therefore not Gaussian. Moreover, the large shoulders yield
outlying atrophy values. When BTB difference of two atrophies is cal-
culated the chances of an outlying point roughly doubles because either
of the atrophies could yield one. Thus the 1 year versus 3 years BTB
difference scatter plots in Figs. 2 and 3 show many outlying points with
the exception of the simulated Gaussian distribution.

4.3. Group size calculations

Group size calculations are also affected by the lack of Gaussianity
of the segmentation noise distributions. Since the ratio of MDBTBD/
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SDBTBD for a Gaussian distribution is always 1.3654, if the BTB dif-
ference distributions were all Gaussian, the calculations would yield the
same group size whether the square of the MDBTBD or SDBTBD was
used to calculate the group size. However, as was established in the
Results section, the distributions are not Gaussian and thus the relative
group sizes may differ between MDBTBD and SDBTBD. As the SDBTBD
is particularly sensitive to the few BTB differences in the large shoulders
it is recommended to use the MDBTBD rather than SDBTBD to calculate
group sizes as group size calculation are than less likely to be influenced
by a few subjects with outlying points.

4.4. Calculating p-values from BTBD distributions

Several different types of statistical tests have been used in the lit-
erature to calculate a p-value when comparing two BTB difference
distributions. All statistical tests require the BTB differences for the two
methods being compared. These tests include parametric tests which
assume a Gaussian distribution, rank tests (Marizzoni et al., 2015; Cash
et al., 2015) such at the Wilcoxon paired signed test and a test based on
the binomial distribution (Cover et al., 2016). However, parametric
tests should be avoided unless the Gaussianity the distributions is
confirmed.

Fig. 2. Scatter plots for the left hippocampus of the 6 segmentation methods for the BTB differences of 1 year versus 3 years. The smaller the clusters the smaller the
noise.
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The binomial test makes the least assumptions regarding the BTB
difference distributions and are therefore most likely to be valid. The
Wilcoxon test includes the assumption that all subjects are measured
with the same scale. For example, the Wilcoxon test assumes, that for a
given method, that a 1% BTB difference is comparable for two subjects -
one with an annual change of 0% and another with an annual change of
5%. Given the complicated algorithms used in the some of the seg-
mentation methods released in recent years, it is unclear if this com-
parison is valid for all methods. As the binomial test only compares
values within each subject it avoids this assumption. It is important to
keep in mind, that for any two methods being compared, the median

BTB difference should be the same, ensuring the two methods have the
same scale.

A major advantage of using statistical tests with more assumptions
is, provided the assumptions hold, a significant result can be found with
fewer subjects. In clinical trials inclusion of subjects is often expensive
and analysis of the data for each subject may also be expensive.
Therefore, using a statistical test with more assumptions can sub-
stantially reduce the number of subjects and thus the cost of a clinical
trial. Consequently, the use of statistical tests with a large number of
assumptions is often justified. However, if the assumptions of a statis-
tical test do not hold, such as Gaussianity or rank, then spurious results

Fig. 3. Scatter plots for the right hippocampus of the 6 segmentation methods for the BTB differences of 1 year versus 3 years. The smaller the clusters the smaller the
noise.
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will occur. Thus the statistical test with the least number of assumptions
is the safe bet.

Fortunately, the cost of subjects for measuring the segmentation
noise of a fully automatic method is essentially zero. The 264 subjects
included in the current study were downloaded from the public ADNI
web site at no cost. While the fully automatic segmentation of the
subject image volumes can take several months on high performance
computers the CPU time, disk space and other resources are often low
cost or free. As the current study has demonstrated, a cohort of 264
subjects is usually sufficient to clearly differentiate between the per-
formance of segmentation methods. Thus for calculating a p-value when
comparing the segmentation noise of hippocampal atrophy measures
the cost benefits ratio for the use of parametric type or Wilcoxon sta-
tistical tests are less relevant and the robust and dependable binomial
test is the prudent choice.

In the current paper we chose to use a novel technique for testing if
a distribution is Gaussian tailored to outlying points in addition to two
conventional tests. The technique was designed by finding the ratio of
two parameters from the segmentation literature, SDBTBD and
MDBTBD, and thus was tailored to answered one of the primary ques-
tions of the current paper. While there are a host of different techniques
presented in the literature for testing whether a sampled distribution is
Gaussian - including the D'Agostino's K-squared test, Jarque–Bera test,
Anderson–Darling test, Cramér–von Mises criterion, Lilliefors test,
Kolmogorov–Smirnov test, Shapiro–Wilk test, Pearson's chi-squared
test, skewness and kurtosis (Razali and Wah, 2011), none of these tests
are as well suited to the problem of outlying points as the tailored test
as we know the departure from Gaussianity was due to outlying points
and not some other deviation from Gaussianity. For example, there is no
indications the skewness of the BTBD distributions is causing major
problems with the statistics.

4.5. Future work

A clinical key question in the field of hippocampal atrophy seg-
mentation is whether the noise of current segmentation methods can be
reduced so segmentation can more often aid in the diagnosis and
treatment of individual subjects. From the ADNI1 study the median
annualized atrophy rates were 1.5% (HC), 2.4% (MCI) and 5.1% (AD)
(Cover et al., 2016). The segmentation method in the current study with
the lowest median MDBTBD, MAPS-HBSI, had a value of 1.26%. From
these values, the difference between the atrophy over 1 year of HC and
MCI is 0.9%. If there was a segmentation method with a MDBTBD of
0.13%, 1/10 of the current MAPS-HBSI value, it may be possible to
determine if a subject has advanced to MCI just based on an atrophy
measurement. Could a hippocampal segmentation method with such
low noise be possible in the next future?

A hint is provided by the comparison of the segmentation noise of
MAPS-HBSI at 1.5T and 3T (Cover et al., 2016). Using the robust bi-
nomial statistical test, it was found the segmentation noise at 1.5T and
3T were the same in spite of the fact that 3T scanners have lower in-
strumentation noise. This result suggests that currently the segmenta-
tion noise is dominating the MRI scanner's instrumentation noise.
Therefore, it may be possible to improve segmentation methods to
where MRI's noise is the source of the floor on the segmentation noise.
However, until there is a working method with a low enough seg-
mentation noise to be sensitive to the lower instrumentation noise of a
3T MRI it is impossible to be certain such a segmentation method is
possible.

One of the goals of the current paper is to provide a standard against
which the noise of new segmentation methods can be compared. As all
of the ADNI1 images files used in the current paper are listed in Table
S1, it is possible to reproduce all the fully automatic calculations in the
current paper as well as the 1 year versus 3 years scatter plots of the
BTB differences. Therefore, it is also possible to run the same analysis
on new algorithms and see if the segmentation noise is better than the
segmentation methods presented in the current paper.

4.6. Conclusions

Fully automatic FreeSurfer 6.0.0 and MAPS-HBSI both have lower
segmentation noise than manual requiring 64% to 39% of the subjects,
respectively, to detect the same treatment effect as manual. Fully au-
tomatic FreeSurfer 5.3.0 cross sectional and FSL/FIRST 5.0.8 have
hippocampal segmentation noise no better than manual. Fully auto-
matic FreeSurfer 5.3.0 longitudinal has similar noise to manual seg-
mentation for the hippocampus and can be used as a fully automatic
surrogate for manual segmentation noise.

All the methods evaluated had segmentation noise distributions
which violated the Gaussianity assumption. Therefore, robust statistics,
such as the MDBTBD and the binomial test, should be used to sum-
marize the noise of segmentation methods. Given the diverse nature of
the BTB difference distributions of segmentation noise, Gaussianity
should be confirmed before the use of parametric statistics as should
any other statistical assumptions underlying statistical tests. Studies of
new or improved hippocampal segmentation methods should employ a
core standard set of statistical tests of the segmentation noise so that the
performance of the methods can be compared to those in the literature.
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Table 3
Comparison of the segmentation methods to the surrogate for the noise of manual segmentation - FreeSurfer 5.3.0 longitudinal. For the binomial comparison, when
the binomial fraction is less than 0.5 the method is less noisy than surrogate manual segmentation.

Method MDBTBD group size relative
to FreeSurfer 5.3.0
longitudinal

SDBTBD group size relative
to FreeSurfer 5.3.0
longitudinal

Binomial test greater than FreeSurfer 5.3.0 longitudinal (FreeSurfer 5.3.0 longitudinal is a
surrogate for manual segmentation noise)

Left Right

1 year 3 year 1 year 3 year
Median (%) Relative Size Median (%) Relative Size Fraction p-value Fraction p-value Fraction p-value Fraction p-value

FreeSurfer 5.3.0
cross sectional

3.06 2.32 7.02 3.27 0.670 0.0000 0.655 0.0000 0.595 0.0012 0.655 0.0000

FreeSurfer 5.3.0
longitudinal

2.01 1.00 3.88 1.00 0.500 0.4750 0.500 0.4754 0.500 0.4750 0.500 0.4754

FreeSurfer 6.0.0
longitudinal

1.63 0.64 2.76 0.49 0.402 0.0005 0.398 0.0003 0.382 0.0005 0.454 0.0618

MAPS-HBSI 1.26 0.39 2.38 0.38 0.405 0.0008 0.348 0.0000 0.401 0.0050 0.351 0.0000
FSL/FIRST 5.0.8 2.11 1.10 8.38 4.66 0.536 0.1340 0.423 0.0056 0.635 0.0000 0.519 0.2891
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